Expanding role of the jumonji C domain as an RNA hydroxylase.

نویسندگان

  • Akiko Noma
  • Ryuichiro Ishitani
  • Megumi Kato
  • Asuteka Nagao
  • Osamu Nureki
  • Tsutomu Suzuki
چکیده

JmjC (Jumonji C) domain-containing proteins are known to be an extensive family of Fe(II)/2-oxoglutarate-dependent oxygenases involved in epigenetic regulation of gene expression by catalyzing oxidative demethylation of methylated histones. We report here that a human JmjC protein named Tyw5p (TYW5) unexpectedly acts in the biosynthesis of a hypermodified nucleoside, hydroxywybutosine, in tRNA(Phe) by catalyzing hydroxylation. The finding provides an insight into the expanding role of JmjC protein as an RNA hydroxylase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The polyserine domain of the lysyl-5 hydroxylase Jmjd6 mediates subnuclear localization.

Jmjd6 (jumonji-domain-containing protein 6) is an Fe(II)- and 2OG (2-oxoglutarate)-dependent oxygenase that catalyses hydroxylation of lysine residues in proteins involved in pre-mRNA splicing. Jmjd6 plays an essential role in vertebrate embryonic development and has been shown to modulate alternative splicing in response to hypoxic stress. In the present study we show that an alternatively spl...

متن کامل

Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing.

The finding that the metazoan hypoxic response is regulated by oxygen-dependent posttranslational hydroxylations, which regulate the activity and lifetime of hypoxia-inducible factor (HIF), has raised the question of whether other hydroxylases are involved in the regulation of gene expression. We reveal that the splicing factor U2 small nuclear ribonucleoprotein auxiliary factor 65-kilodalton s...

متن کامل

Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase

Unlike classical 2-oxoglutarate and iron-dependent dioxygenases, which include several nucleic acid modifiers, the structurally similar jumonji-related dioxygenase superfamily was only known to catalyze peptide modifications. Using comparative genomics methods, we predict that a family of jumonji-related enzymes catalyzes wybutosine hydroxylation/peroxidation at position 37 of eukaryotic tRNAPh...

متن کامل

Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases.

The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases remove methyl groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is ...

متن کامل

Vitamin D and the epigenome

Epigenetic mechanisms play a crucial role in regulating gene expression. The main mechanisms involve methylation of DNA and covalent modifications of histones by methylation, acetylation, phosphorylation, or ubiquitination. The complex interplay of different epigenetic mechanisms is mediated by enzymes acting in the nucleus. Modifications in DNA methylation are performed mainly by DNA methyltra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 45  شماره 

صفحات  -

تاریخ انتشار 2010